Learning Math and Coding with Robots

Linkbot Image Mindstorm Image Cursor Image
0x2418126-6-12y2418126-6-12
Grid:
Tics Lines:
Width px
Hash Lines:
Width px
Labels:
Font px
Trace Lines:
Robot 1:
Width px
Robot 2:
Width px
Robot 3:
Width px
Robot 4:
Width px
Axes: x-axis y-axis Show Grid
Grid: 24x24 inches 36x36 inches 72x72 inches
96x96 inches 192x192 inches
Quad: 4 quadrants 1 quadrant Hardware
Units: US Customary Metric
Background: Background Image

Robot 1

Linkbot
Mindstorm
Initial Position:
( in, in)
Initial Angle:
deg
Current Position: (0 in, 0 in)
Current Angle: 90 deg
Wheel Radius:
Track Width:
in

Robot 2

Linkbot
Mindstorm
Initial Position:
( in, in)
Initial Angle:
deg
Current Position: (6 in, 0 in)
Current Angle: 90 deg
Wheel Radius:
Track Width:
in

Robot 3

Linkbot
Mindstorm
Initial Position:
( in, in)
Initial Angle:
deg
Current Position: (12 in, 0 in)
Current Angle: 90 deg
Wheel Radius:
Track Width:
in

Robot 4

Linkbot
Mindstorm
Initial Position:
( in, in)
Initial Angle:
deg
Current Position: (18 in, 0 in)
Current Angle: 90 deg
Wheel Radius:
Track Width:
in

Finding the Maximum Height of a Baseball
Problem Statement:
Tommy hits a baseball with a bat, and the motion of the baseball is defined by the following function: s(x) = -0.5x2+6x. Graph the quadratic equation using a linkbot from x = 0 to x = 12, then drive the linkbot to the coordinates of the maximum height of the baseball.
/* Code generated by RoboBlockly v2.0 */
#include <linkbot.h>
double x;
double y;
CLinkbotI robot;
double radius = 1.75;
double trackwidth = 3.69;

robot.traceOff();
x = 0;
y = -0.5 * pow(x, 2) + 6 * x;
robot.drivexyTo(x, y, radius, trackwidth);
robot.traceOn();
for(x = 0; x <= 12; x += 0.5) {
  y = -0.5 * pow(x, 2) + 6 * x;
  robot.drivexyTo(x, y, radius, trackwidth);
}
robot.traceColor("#00FFFF", 4);
robot.drivexyTo(6, 18, radius, trackwidth);
Blocks Save Blocks Load Blocks Show Ch Save Ch Workspace
Problem Statement:
Tommy hits a baseball with a bat, and the motion of the baseball is defined by the following function: s(x) = -0.5x2+6x. Graph the quadratic equation using a linkbot from x = 0 to x = 12, then drive the linkbot to the coordinates of the maximum height of the baseball.

		
Rubbish bin
Time